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Geometric Theory of Functional D i f f e r e n t i a l  Equations 

Jack K. Hale 
- 

1. Introduct ion.  

Functional d i f f e r e n t i a l  equations provide a mathematical model f o r  

a physical  system i n  which t h e  r a t e  o f  change of  t h e  system may depend upon 

i t s  pas t  h i s to ry ;  t h a t  is, t h e  fu ture  s t a t e  of t h e  system depends not only 

upon t h e  present  bu t  a l s o  a p a r t  of i t s  pas t  h i s tory .  

such an equation i s  a d i f f e r e n t i a l  d i f fe rence  equation 

A spec ia l  case of 

where r i s  a nonnegative constant. For r = 0, t h i s  i s  an ordinary d i f f e r e n t i a l  

equation. 

f e r e n t i a l  equation, i s  one of t he  form 

A more general  equation, which we choose t o  c a l l  a func t iona l  d i f -  

where x i s  an n-vector and t h e  symbol xt i s  defined as follows. If  x i s  

a func t ion  defined on some i n t e r v a l  then f o r  each f ixed 

t i n  [a, u + A), xt i s  a function defined on t h e  i n t e r v a l  [-r, 03 whose 

va lues  axe given by I n  o ther  words, t h e  graph 

of xt i s  t h e  graph of x on [t-r, t] shi f ted  t o  t h e  i n t e r v a l  [-r, 03. 

To obta in  a so lu t ion  of (1) f o r  

Cp on t h e  i n t e r v a l  [a-r, a ]  and then extends Cp t o  t h a by r e l a t i o n  (1). 

[a-r, U + A), A > 0, 

xt(6) = x ( t  + e), -r 6 8 B 0. 

t h U, one spec i f i e s  an i n i t i a l  funct ion 

Funct ional  d i f f e r e n t i a l  equations have been discussed i n  t h e  l i t e r a t u r e  
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s ince  t h e  ea r ly  17001s, beginning with John Bernoul l i  [l] and L. E u l e r  [2]. 

Early inves t iga t ions  were usua l ly  devoted t o  p a r t i c u l a r  equations t o  which 

were applied special ized techniques. Also, due t o  t h e  d i f f i c u l t i e s  t h a t  

were being encountered i n  t h e  development of a theory  f o r  ordinary d i f f e r e n t i a l  

equations, an extensive theory  f o r  func t iona l  d i f f e r e n t i a l  equat ions w a s  

n a t u r a l l y  postponed. 

development of t h e  subjec t  w a s  Volterra  [3,4] who pointed out  very c l e a r l y  

t h e  appl ica t ions  t o  t h e  theory  of v i s c o e l a s t i c  mater ia l s  and t h e  i n t e r a c t i o n  

of  b io log ica l  species.  Since Volterra,  other  appl ica t ions  have a r i s en  i n  

var ious aspects of biology, medicine, econometrics, number theory  and problems 

of  feedback control.  

system which would not  use i n  a s ign i f i can t  manner a p a r t  o f  i t s  pas t  h i s t o r y  

and a model f o r  such systems might be a func t iona l  d i f f e r e n t i a l  equation. 

These extensive appl ica t ions  have l ed  t o  a rapid development of 

One o f  t h e  most prominent proponents of  a more systematic 

A l s o  it i s  hard t o  v i sua l i ze  an adapt ive con t ro l  

t h e  theory during t h e  p a s t  twenty years  and, as a consequence, a few books 

a r e  now ava i lab le  on t h e  subjec t  (Mishkis [ 5 ] ,  Pinney [6], Krasovskii [TI, 

Bellman and Cooke [8], Halanay [9]). El' s g o l ' t z  [lo] also h a s  two chapters  

devoted t o  d i f f e r e n t i a l  d i f f e rence  equations. 

t a i n s  mater ia l  on d i f f e r e n t i a l  d i f fe rence  equations and an exce l l en t  discussion 

of s p e c i f i c  appl icat ions.  

Lyapunov functions f o r  a d iscuss ion  of s t a b i l i t y .  

The book of Minorsky [ll] con- 

Kahn 1121 includes a sec t ion  on t h e  use of 

Even though system (1) i s  obviously a problem i n  an i n f i n i t e  

dimensional space, t h e r e  has been some reluctance t o  attempt t o  d i scuss  t h e  

problem i n  t h i s  context.  

at tempt t o  gain as much information as poss ib le  about t h e  so lu t ions  of (1) 

by considering (1) as def in ing  curves i n  an n-dimensional vector  space. 

I n  f ac t ,  most of t h e  papers i n  t h e  l i t e r a t u r e  
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Krasovskii  [7] w a s  t h e  f irst  person t o  i n d i c a t e  t h e  importance of s tudying 

(1) from t h e  poin t  of view t h a t  t h e  so lu t ions  def ine  curves i n  a func t ion  

spac2. Krasovskii w a s  i n t e re s t ed  i n  t h e  s t a b i l i t y  p rope r t i e s  of so lu t ions  

of (1). I n  e a r l i e r  works, E l ' s g o l ' t z  [lo] had shown t h a t  s u f f i c i e n t  con- 

d i t i o n s  f o r  t h e  s t a b i l i t y  of a so lu t ion  of (1) obtained by an app l i ca t ion  

of Lyapunov funct ions ( func t ions  on a n-dimensional vector  space) could be  

s t a t ed  i n  a manner completely analogous t o  those  fo r  ordinary d i f f e r e n t i a l  

equations.  E l ' s g o l ' t z  a l s o  shows by simple examples t h a t  it i s  impossible 

t o  prove t h e  converse of Lyapunov's theorems i n  t h i s  context.  

t h e  so lu t ions  of (1) as curves i n  a func t ion  space, Krasovskii proved t h a t  

t h e  converse theorems of Lyapunov were va l id  i f  Lyapunov func t iona ls  were 

employed r a t h e r  than  Lyapunov functions.  

By i n t e r p r e t i n g  

The fundamental work of  Krasovskii provided t h e  d i r e c t i o n  and 

encouragement f o r  t h e  development of a q u a l i t a t i v e  o r  geometric theory  of  

func t iona l  d i f f e r e n t i a l  equations. O f  course, a f t e r  someone has f irst  pointed 

out  such a fundamental idea, it i s  so n a t u r a l  t h a t  one wonders why t h e  theory 

d i d  no t  always proceed i n  t h a t  d i rec t ion .  

a t  t ime t 

behavior of  t h e  system f o r  a l l  time g rea t e r  than 

state of a system described by (1) should be t h e  funct ion 

vec to r  x ( t ) .  O f  course, t h i s  implies t h a t  t h e  o r b i t s  of t h e  system w i l l  

t a k e  p lace  i n  a funct ion space, but t h e  r e s u l t s  t h a t  a r e  obtained and t h e  

b a s i c  understanding t h a t  i s  achieved seem t o  outweigh t h e  complications in t ro -  

duced by working i n  a funct ion space. 

d i scuss ion  of (1) implies  t h a t  a l l  aspec ts  of (1) will have t o  be  discussed 

anew, even l i n e a r  equations f o r  which t does not appear e x p l i c i t l y .  But, 

I n  fact, t h e  s t a t e  of  any system 

should be t h a t  p a r t  of t h e  system which uniquely determines t h e  

t. I n  t h i s  context,  t h e  

and not  t h e  x t 

I n  a sense, such an approach t o  a 



for tunately,  we s h a l l  see t h a t  t h e  r e inves t iga t ion  of even t h e s e  simple 

systems leads to  a much b e t t e r  understanding of them and a l s o  i n d i c a t e s  methods 

of a t t a c k  f o r  common problems as w e l l  as t h e  posing of new problems f o r  more 

complicated systems. 

This r epor t  i s  a discussion of some of t h e  a spec t s  of f u n c t i o n a l  

d i f f e r e n t i a l  equations which are of p a r t i c u l a r  i n t e r e s t  t o  t h e  author. 

important areas o f  current  i nves t iga t ion  are not mentioned a t  a l l .  

t h e  discussion concerns only retarded equations and t h e  reason f o r  t h i s  i s  

t h a t  t h e  theory f o r  t h e  other  types i s  not as w e l l  developed and i s  i n  a 

rapid s t a t e  of flux. 

Many 

Also, 

L e t  us now be more spec i f i c .  Our funct ion space w i l l  always be 

n 
taken t o  be the  space 

t h e  i n t e r v a l  [-r, 01 

Rn. For any cp i n  C, we de f ine  IIcpII by t h e  r e l a t i o n  

C = C ( [ - r ,  01, R ) 

i n t o  an n-dimensional r e a l  o r  complex vector  space 

of continuous funct ions mapping 

where 1x1 i s  t h e  norm of a vector x i n  Rn. 

Suppose a i s  a given real  number ( w e  allow a = - 4, n i s  an 

open subset of C and f ( t ,  c p )  i s  defined f o r  t 2 a, cp i n  n. If U i s  

a given r e a l  number i n  [a, =)(if a = - o, [a, =) = (-a, a)) and Cp i s  a 

continuous function on [a-r, a ]  with cp i n  S2, then w e  say x = .(a, Cp) 
U 

i s  a so lu t ion  of (1) with i n i t i a l  value cp at a i f  x i s  defined and 

continuous on [a-r, a + A) f o r  some A > 0, coincides  with cp on [a-r, a], 

x i s  i n  0 and x satisfies (1) f o r  a 5 t < u + A. t 
The following r e s u l t s  are not d i f f i c u l t  t o  prove and, i n  fact, t h e  
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proofs can be supplied by following t h e  methods i n  Coddington and Levinson [l3] 

f o r  ordinary d i f f e r e n t i a l  equations or  an app l i ca t ion  o f  we l l  known f ixed point  

theorems. If f ( t ,  c p )  i s  continuous f o r  t Z a, cp i n  R, then t h e r e  ex is t s  

a so lu t ion  of (1) with i n i t i a l  value cp at u f o r  any d i n  [a, m) and 

any cp such t h a t  (p, i s  i n  R. I f ,  i n  addition, f o r  any bounded closed subset B 

of R, t h e r e  e x i s t s  a continuous function K ( t )  2 0, t 2 a, such t h a t  

I f ( t ,  c p ) (  5 K ( t )  f o r  a l l  t B a, (p i n  B, then every so lu t ion  of (1) can 

be continued i n  t u n t i l  t h e  boundary o f  B i s  reached. If, i n  addition, 

f ( t ,  c p )  i s  l o c a l l y  Lipschi tz ian i n  cp, then f o r  any u 2 a and cp such 

t h a t  cpU i s  i n  R, t h e r e  i s  only one so lu t ion  X(U,  c p )  of (1) with i n i t i a l  

value cp at u and x (a, c p )  depends continuously upon u, cp and t. t 

2. General p rope r t i e s  of so lu t ions .  I n  t h e  following, we s h a l l  always 

assume t h a t  f ( t ,  c p )  i s  continuous f o r  t 2 a, cp i n  R and f o r  any 

bounded subset B of R, t h e r e  exists a continuous funct ion K ( t ) ,  t 2 a, 

such t h a t  I f ( t ,  c p ) l  5 K ( t )  f o r  t 2 a, cp i n  B. Also, w e  s h a l l  suppose 

t h a t  t h e  so lu t ion  x = x(u, cp)  of (1) with i n i t i a l  value cp a t  u e x i s t s  

f o r  a l l  t 2 6, xt(u, (p) depends continuously upon t, U, cp, and a unique- 

nes s  property holds. 

If x = .(a, c p )  i s  a solut ion of (1) with i n i t i a l  value cp at 6, 

we def ine a t r a j e c t o r y  - of (1) through (0, cp,) 

given by ( ( t ,  xt(u, Cp)), t h a). If (1) i s  autonomous, t h a t  is, f ( t ,  c p )  i s  

independent of t, then we choose CT = 0 and designate  t h e  so lu t ion  by 

x = x(cp). 

as t h e  set  o f  po in t s  i n  tu ,  a) X R 

I n  t h e  autonomous case, we have t h e  important semigroup property 



I n  t h e  autonomous case, w e  def ine  t h e  path o r  o r b i t  of  (1) through 

t h e  s e t  of  points  i n  C 

Cp as 

given by UtpOxt(Cp). 

Some words of caut ion  a r e  i n  order. F i r s t  of a l l ,  a t r a j e c t o r y  of 

eq. (1) through a given poin t  

(a, cp,), t he re  may not e x i s t  a t r a j e c t o r y  t o  t h e  l e f t  of 

i s  a t r a j e c t o r y  through (a, Cp,) defined f o r  an s < a, then  rp(8) would 

have t o  b e  d i f f e r e n t i a b l e  on an i n t e r v a l  a: S 8 6 (I f o r  some a < a. 

(a, cp,) i s  only defined f o r  t b u. For a given 

I n  f a c t ,  i f  t h e r e  a. 

Secondly, t h e  uniqueness property only holds f o r  t s a. Therefore, 

t h i s  does not exclude t h e  p o s s i b i l i t y  t h a t  two d i s t i n c t  t r a j e c t o r i e s  of (1) 

coincide a f t e r  some f i n i t e  time. A s  an example, consider t h e  equation 

2 ( 3 )  %(t) = -m( t -1 ) [1 -x  (t)], 

which has t h e  so lu t ion  x ( t )  = 1 f o r  a l l  t. If  Co i s  t h e  s e t  of  func t ions  

cp i n  C w i t h  Cp(0) = 1, then  t h e  uniqueness o f  so lu t ions  t o  t h e  r i g h t  implies  

t h a t  t h e  so lu t ion  x(q) s a t i s f i e s  xt(Cp) equal  t o  t h e  constant  funct ion 1 

f o r  t I 1. Consequently, t h e  corresponding t r a j e c t o r i e s  and pa ths  of d i s t i n c t  

so lu t ions  coincide a f t e r  one u n i t  of time. If we consider t h e  mapping which 

t a k e s  (a, 9,) i n t o  

w i l l  not i n  general  be 1-1. 

(t, xt(a, Cp)), then  t h i s  example shows t h a t  t h i s  mapping 

Even i f  t h i s  mapping i s  1-1, it will not  be a homeomorphism i f  

I n  fact ,  t h e  hypotheses assumed on t h e  funct ion . r > 0. f i n  (1) imply 

t h a t  i f  Cp belongs t o  a closed b a l l  i n  C then  t h e  so lu t ion  x t ( U ,  9) 

belongs t o  a compact subset of C f o r  t 2 a + r. This  fol lows f r o m t h e  

f a c t  t h a t  t h e  funct ions 

t h e i r  f irst  de r iva t ives  f o r  any t Z a + r. 

(xt(u, q ) ]  are uniformly bounded toge ther  with 
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A funct ion X* defined and continuous on (-=, a] i s  sa id  t o  be 

a so lu t ion  of (1) on (-=, a1 i f  f o r  every u i n  (-=, a] t h e  so lu t ion  

x(a, x;) of (1) w i t h  i n i t i a l  value x: a t  a e x i s t s  on [a, a] and 

xt(a, xu) = x* f o r  t i n  [a, a]. AII element 9 of c i s  i n  ~ ( o ,  cp),  

t h e  urlimit s e t  of a t r a j e c t o r y  through 

of nonnegative r e a l  numbers 

as n + O D  where x(u, Cp) i s  t h e  solution of (1) with i n i t i a l  funct ion cp 

at a. The s e t  A(a, Cp), t h e  a-limit s e t  of  a t r a j e c t o r y  through (a, cp,), 

i s  defined i n  a similar manner except with negative values of 

autonomous, we w i l l  omit 6 and write Q ( c p )  and A(cp). A s e t  M i n  C 

i s  c a l l e d  an invariant, set i f  f o r  any Cp i n  M, t h e r e  e x i s t s  a funct ion x*, 

depending on Cp, defined on (-"0, m), x i n  M for  t i n  (-a, a), xo = (9, 

such t h a t ,  fo r  every U i n  (-a, a), t h e  so lu t ion  x(6, x:) of eq. (1) 

w i t h  i n i t i a l  value x at u s a t i s f i e s  xt(b, xu) = x f o r  t 2 6. Notice 
U t 

* 
t 

(a, aa), it the re  i s  a sequence 

tn, tn + 00 as n -+ 00 such t h a t  11 (a,cP)-$( + O  
xtn 

t. If (1) i s  

- 
* * 
t 

* * 

t h a t  t o  any element of an invariant  s e t  t h e r e  corresponds a so lu t ion  of (1) 

which must be defined on (-=, w). 

The above d e f i n i t i o n  of an invar ian t  s e t  may a t  f irst  glance not 

seem t o  be appropriate s ince t r a j e c t o r i e s  a r e  i n  general  defined only on a 

semiaxis, but  t h e  d e f i n i t i o n  i s  j u s t i f i e d  by the  following lemma. 

Lemma. If cp i s  such t h a t  t h e  solution x(U, c p )  i s  defined and bounded on 

[o-r, w), then Q ( 6 ,  9) i s  a nonempty compact connected s e t  and d is t (x t (6 ,  c p ) ,  

Q(a, c p ) )  4 0  as t + 00 . If cp i s  such t h a t  t he re  i s  a so lu t ion  .(a, c p )  

of (1) defined and bounded on (-a, 01, xa(cJ, 9 )  = 9, then A(o, 9) i s  a 

nonempty,compact,connected s e t  and d i s t (x t (o ,  Cp), Q ( C p ) )  + O  as t + -Q) . 
If (1) i s  autonomous, then A(a, Cp), Q(a, 9) are a l s o  invar ian t  sets. 
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The proof of t h i s  lemma follows along t h e  same l i n e s  as t h e  proof 

of t h e  same f a c t s  i n  ordinary d i f f e r e n t i a l  equations (see Hale [14]).  The 

invariance property of t h e  u- and a - l i m i t  s e t s  of an autonomous system have 

been extended i n  a convenient manner by Miller [u] t o  pe r iod ic  and almost 

pe r iod ic  systems. W e  a l s o  remark t h a t  t h e s e  same p rope r t i e s  can be extended 

t o  t h e  case i n  which t h e  r e t a r d a t i o n  i n t e r v a l  i s  i n f i n i t e  i f  t h e  compact open 

topology i s  used on C (see [ 141 f o r  t h e  autonomous case).  For t h e  app l i ca t ion  

of t h e s e  concepts t o  s t a b i l i t y ,  see  t h e  paper of  LaSalle i n  t h e s e  proceedings 

and also [14]. 

3 .  Some geometric p rope r t i e s  of l i n e a r  autonomous equations and t h e  v a r i a t i o n  

of constant  formula. .In a few words, one could say t h a t  t h e  ult imate goal  i n  

the  q u a l i t a t i v e  theory of d i f f e r e n t i a l  equations i s  a cha rac t e r i za t ion  of 

those classes of equations whose t r a j e c t o r i e s  have similar topo log ica l  

propert ies .  Even f o r  ordinary d i f f e r e n t i a l  equations, such a cha rac t e r i za t ion  

i s  i n  i t s  infancy f o r  dimensions g rea t e r  than 2. A s  a consequence, one i s  

forced t o  discuss  t h e  p rope r t i e s  of t r a j e c t o r i e s  i n  a neighborhood of some 

s e t  and, i n  pa r t i cu la r ,  i n  a neighborhood of simple i n v a r i a n t  sets. 

The simplest  i n v a r i a n t  set  o f  (1) i s  a constant so lu t ion  (equilibrium 

or  c r i t i c a l  point)  and a study of t h e  t r a j e c t o r i e s  near t h i s  sou l t ion  leads - 
n a t u r a l l y  t o  l i nea r  func t iona l  d i f f e r e n t i a l  equations. However, i n  t h i s  section, w e  

wish only t o  discuss  autonomous l i n e a r  equations; t h a t  is, equations of t h e  

form 

(4) 
0 

%(t) = L(xt) d g f  = [dq(e)]x(t  + 6 )  
-r 

where q i s  an n X n matr ix  funct ion whose elements have bounded va r i a t ion  

on [-r, 01. 

The c h a r a c t e r i s t i c  equation of (4) i s  
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( 5 )  
?La 0 

d e t  A ( A )  = 0, A ( A )  = X I  -J e d q ( e )  
-r 

X t  and t o  any X sa t i s fy ing  ( 5 ) ,  there  e x i s t s  a so lu t ion  o f  (4), x ( t )  = e b, 

A (X)b = 0 defined on (-m, m). Also, i f  X i s  a root  o f  ( 5 )  of m u l t i p l i c i t y  

m(X),  then there  a r e  exact ly  m 

form p ( t ) e  where p ( t )  i s  a polynomial i n  t. A n a t u r a l  problem t o  

i n v e s t i g a t e  i s  t h e  p o s s i b i l i t y  o f  expanding any so lu t ion  of (4) i n  terms of 

t h e  b a s i c  funct ions associated w i t h  each root  of ( 5 ) .  

studied i n  d e t a i l  and the  reader may consul t  Bellman and Cooke [8] f o r  spec i f i c  

r e s u l t s  and references.  

information as possible  about t h e  solutions of (4) without r e s o r t i n g  t o  an 

expansion of t he  solution, we proceed i n  a d i f f e r e n t  d i rec t ion .  

which i s  summarized below may be found i n  Shimanov [16], Hale [17]. 

l i nea r ly  independent solut ions of (4) of t h e  

A t  

This problem has been 

However, since our  a i m  i s  t o  determine as much 

The theory 

If x = x(cp) i s  t h e  solution of (1) with i n i t i a l  value 9, at  0, 

then we def ine  t h e  operator T ( t ) ,  t Z 0, on C, by t h e  r e l a t i o n  

The operators  

l i n e a r  operators on C with T ( 0 )  = I, the  iden t i ty .  For any t 2 r, T ( t )  

i s  a l s o  compact. 

t h e  theory but  many of t h e  propert ies  described below do not depend upon 

compactness. 

appl icable  t o  l i nea r  equations w i t h  hered i ta ry  e f f e c t s  involving 

t h e  f i r s t  der iva t ive  of x. Since these r e s u l t s  a r e  not ye t  complete, we 

confine out a t t e n t i o n  t o  (4) .  

T ( t ) ,  t Z 0, are  a s t rongly continuous semigroup o f  bounded 

This l a t t e r  property leads  t o  a great s imipl i f ica t ion  i n  

This fact seems t o  indicate  t h a t  much of t he  theory w i l l  be 

The proper t ies  of T ( t )  permit one t o  def ine  the  i n f i n i t e s i m a l  
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generator A o f  T(t) as 

The spectrum of  A ,  a( A ), coincides with those  values o f  X which s a t i s f y  

( 5 )  

The p rope r t i e s  of T ( t )  (compactness i s  not  needed) imply t h a t  t h e  

point  spectrum o f  T ( t ) ,  FW(T(t))  i s  given by t h e  r e l a t i o n  

(8) Pd(T(t))  = (eXt , X i n  a ( A ) ) .  

If X i s  i n  o(A),  then MX(A) denotes t h e  generalized eigenspace 

of X ; t h a t  is, t h e  m a x i m a l  se t  of cp i n  C which are annihi la ted by powers 

of A - X I .  The subspace M ~ ( A )  i s  f i n i t e  dimensional, i s  i n v a r i a n t  

under T ( t )  and i f  QX = ((pI,...y(pd) i s  a basis f o r  MX(A) ,  then 

where t h e  only eigenvalue of B x i s  A. Relat ion ( 9 )  implies  t h a t  on M - p )  Y 

t h e  so lu t ions  of (4 )  behave as an ordinary d i f f e r e n t i a l  equation and can be 

defined on (-a, a). Also, one e a s i l y  shows that t h e  so lu t ions  of (4) on 

MA( A) where 

p ( t )  i s  a polynomial i n  t and X i s  a r o o t  o f  ( 5 ) .  Therefore, t h e  con- 

s t r u c t i o n  of CD can be performed as follows. 

a basis f o r  the so lu t ions  of (4)  of t h e  form p(t)eXt where p ( t )  i s  a 

polynomial i n  t and X i s  a root  of ( 5 )  of mul t ip l ic i ty  d. If we de f ine  

cpj(e) = pj(8)e  , -r 5 e s 0, j = 1,2 ,..., d, 

coincide with those  so lu t ions  of (4)  of t h e  form p(t)eXt 

A t  
Let p l ( t ) e  , . . . ,pd(t)eXt be 

= ((pl,. . . , ( P d ) ’  t hen  QX i s  
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a basis f o r  MA(A) 

@&e) = O X ( 0 )  exp (BXO), -r 5 8 I 0. 

and t h e  matrix BX i s  determined by t h e  r e l a t i o n  

Our next goal  i s  t o  f ind a subspace of C which i s  invar ian t  under 

T ( t )  and complementary t o  %(A).  

The author has been informed by K. Meyer t h a t  t h e  exis tence of such 

a covplementary subspace follows by an appl ica t ion  of some general  r e s u l t s  on 

bounded l i n e a r  operators and the  theory of semigroups of transformations. 

However, i n  some appl icat ions,  it seems necessary t o  have an e x p l i c i t  repre- 

sen ta t ion  of t h i s  complementary subspace. Also, such an e x p l i c i t  representa t ion  

allows one t o  i n t e r p r e t  r e s u l t s  i n  language familiar t o  ordinary d i f f e r e n t i a l  

equat ionis t s .  We now give a recipe f o r  f inding t h i s  subspace and thereby 
c 

obta in  an e x p l i c i t  coordinate system i n  C. 

This i s  accomplished by means of t he  b i l i n e a r  form 

defined for  a l l  cp i n  C and Jr i n  C" = C ([-r, 01, Rn*), where Rn* i s  

t h e  n-dimensional space of row vectors. 

t o  t h e  b i l i n e a r  form (10) i s  defined as 

The equation "adjoint" t o  (4)  r e l a t i v e  

and i t s  associated c h a r a c t e r i s t i c  equation i s  obtained by f ind ing  conditions 

on X which w i l l  ensure a solution of (11) of t h e  form ce ; t h a t  is, 
-AS 

de t  At (A) = 0, (A' i s  the  transpose of A). 

-hS - 
Let ql( s ) e  , . . . ,qd( s ) e  ", be  a b a s i s  f o r  t h e  solut ions.  of eq. (11) 
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- hs of t h e  form q ( s )e  , where q ( s )  i s  a polynomial i n  s and h i s  a r o o t  

of ( 5 )  of m u l t i p l i c i t y  d. 

Yh = c o l  (q1,. . . ,JIn),  

show ( s e e  [ 6 ] , [  71) t h a t  
l o s s  i n  gene ra l i t y  can be taken t o  be t h e  i d e n t i t y .  

-he 
I f  w e  de f ine  $ . ( e )  = q j ( e ) e  , 0 5 8 5 r , 

then one can 
J 

( Y v O h )  = (Jl i ,(pj) ,  i, j = 1, 2,. . . ,d, 

( Y x p  QL) i s  a nonsingular matrix, which without 

If YL, QL are chosen as above; and i f  we de f ine  

p = ( c p  i n  C : cp = Q b f o r  some constant vector b) 
h 

Q = (cp i n  c : ( Y ~ ,  c p )  = 0 )  

then every element Cp i n  C can be uniquely decomposed as 

P Q  c p = c p  + c p  , 
P 

cp = b , b = (Yx, c p )  , cpQ i n  Q. x 

Furthermore, t he  subspace Q i s  inva r i an t  under t h e  ac t ion  of T ( t ) .  

The above r e s u l t s  do not use t h e  compactness of T ( t )  bu t  only 

t h e  fact  t h a t  t h e  dimension of Mh(A) i s  f i n i t e .  If T ( t )  i s  compact f o r  

t 2 r, 

( 5 )  with Re h 2 y. If A = A ( r )  = ( h  : Reh 2 y ,  d e t  A(()  = 0), then 

t h e  above process can be ca r r i ed  out f o r  each A. i n  A and one obtains  a 

decomposition of C as follows 

then f o r  any r > 0, t h e r e  are only a f i n i t e  number of r o o t s  of 
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where 0 , Y 
described above f o r  A i n  A and t h e  spectrum of BA i s  p r e c i s e l y  A. The 

spaces P(h) , Q(A) are both invariant  under T ( t )  and t h e r e  e x i s t  E > 0, 

K > 0 such t h a t  

are bases f o r  t h e  so lu t ions  of (4)  and (11) of t h e  type 
'2 h j  

j 

cp i n  

The decomposition (14) and property (15) give us a very clear 

p i c t u r e  of t h e  behavior of t h e  solut ions of a l i n e a r  autonomous eq. (4) .  

Also, we can now de f ine  concepts which would no t  have been very meaningful 

i n  Rn. For example, w e  can say t h a t  system (4)  has a saddle point  a t  0 i f  

no r o o t s  of ( 5 )  l i e  on t h e  imaginary axis. This  d e f i n i t i o n  coincides with 

t h e  d e f i n i t i o n  f o r  ordinary d i f f e r e n t i a l  equations and t h e  t r a j e c t o r i e s  i n  C 

behave i n  e s s e n t i a l l y  t h e  same manner as they do f o r  an ordinary d i f f e r e n t i a l  

equation. 

observe from r e l a t i o n  (15) t h a t  t he  so lu t ions  on approach zero as 

t + m f o r  y = 0. The so lu t ions  o f  P(A) are defined on ( -w, a) and 

approach zero as t -+ -00 . The p ic ture  i s  indicated below. 

To see t h i s ,  simply l e t  A = ( h  : R e  A > 0 , d e t  ax) = 0) 

Q(R) 

and 

A n a t u r a l  problem t o  inves t iga t e  i s  t h e  preservat ion of t h e  saddle 

po in t  property when (4) contains  some nonlinear per turbat ions of order higher 

t han  t h e  f i r s t  near cp = 0. The basic t o o l  f o r  t h i s  i nves t iga t ion  i s  t h e  



v a r i a t i o n  of constants formula which has a l ready been supplied by Bellman and 

Cooke [ 8 ] .  I n  f ac t ,  i f  Xo i s  t h e  n X n matrix funct ion defined on [-r, 01 

by 

0 , - r S Q < O  

I , e = o  

then  t h e  solut ion of t h e  equation 

(16) $(t) = L(xt) + N ( t ,  xt) 

k i t h  t h e  i n i t i a l  value Cp a t  u i s  given by 

t 
xt(e) ='[T(t-U)Cpu](e) + 1 [ T ( ~ - T ) X ~ ] ( B ) N ( T ,  X T ) d T  , -r 4 8 5 0. 

U 

For s implici ty  i n  t h e  nota t ion  we will wri te  t h i s  as 

t 

U 
xt = T ( t - U ) C p u  + J T ( t - T ) X o N ( T ,  xT)dT . 

If the  space C i s  decomposed as i n  r e l a t i o n s  (14), then eq. (17) 

can be wri t ten as 
P t 

U 

x: = T(t-u)Cpo P + 1 T ( t - r ) X o  N ( T ,  xT)dT 

Q t 

U 

(18) b 

x: = T ( t - u ) q u  Q + / T(t-'F)XO N(T, xT)d~ 

P Q  
t t  X t = X  + x  

where f o r  s implici ty  w e  have l e t  P = P ( h )  , Q = Q(A). Since P i s  a f i n i t e  

dimensional space spanned by 

w r i t t e n  i n  a form resembling an ordinary d i f f e r e n t i a l  equation. 

eqs. (18) are equivalent t o  

(0 = @(A), t h e  first equation i n  (18) can be 

I n  fact ,  



- 15- 

4. Applications of t h e  preceding theory. 

4.1. Behavior near an  equilibrium point  of an autonomous equation. 

Suppose no roots  of ( 5 )  l i e  on t h e  imaginary axis and the  space C i s  decom- 

posed as i n  (14) w i t h  A = ( A  : R e  h > 0, de t  & A )  = 0) and consider t h e  

equation 
, 

( 2 0 )  k ( t )  = L(xt) + N(xt) 

where N ( 0 )  = 0 and t h e r e  e x i s t s  a continuous function q(p) , p h 0, ~ ( 0 )  = 0 

such t h a t  l N V 1 )  - N((P2) I 5 r l (P ) I I yP2 l l ,  for  11941 5 p , ll(P211 5 p 

A discussion of t he  saddle point property f o r  eq. (20) must proceed 

with extreme care. A t  f i r s t  glance, one might attempt t o  f ind a spec i f i c  

r e l a t i o n s h i p  between t h e  t r a j e c t o r i e s  of eq. (20) and those of eq. ( 5 ) .  How- 

ever, such an inves t iga t ion  appears t o  be very d i f f i c u l t  a s  t h e  following 

simple example indicates .  Consider t he  equation 

where N ( 9 )  s a t i s f i e s  t h e  above conditions. This equation i s  t h e  v a r i a t i o n a l  

equation r e l a t i v e  t o  t h e  so lu t ion  x = 1 of eq. ( 3 ) .  The decomposition 

i n  C i s  given by 
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The subspace P i s  one dimensional and t h e  t r a j e c t o r i e s  of k ( t )  = 2 m ( t )  

behave a s  e2&. On the  o ther  hand, t h e  paths  associated w i t h  t r a j e c t o r i e s  

with i n i t i a l  values on Q reach t h e  zero funct ion i n  a t  most r u n i t s  

of time. 

so many paths  would posses such a property. 

For t h e  pertrubed equation, it seems unreasonable t o  suppose t h a t  

The following statements a r e  a consequence of much more genera l  

r e s u l t s  i n  Hale and Pere l l6  [18] and a s s e r t  t h a t  t h e r e  i s  a very c lose  

r e l a t i o n s h i p  between t h e  i n i t a l  values o r  so lu t ions  of eq. (20) and eq. ( 5 )  

which approach zero as t + OJ or  t + --03 . I n  t h e  statements below p 

and 

i n  r e l a t i o n s  (14).  

P 

a r e  the  pro jec t ion  operators  defined by t h e  decomposition given 
pQ 

I) Let K be t h e  constant defined i n  r e l a t i o n  (15). There e x i s t s  

Q a 6 > 0 such t h a t  t h e  s e t  S of a l l  cp i n  C such t h a t  llcp 11 5 6/2k 

and t h e  so lu t ion  x(cp) of eq, (20) s a t i s f i e s  IIx,(cp)I( 5 6 , t Z 0, i s  

homeomorphic through p t o  t h e  s e t  of cp i n  Q w i t h  llcpll 5 - 6/2K. Further-  

more, t h e  s e t  S i s  tangent t o  Q a t  0 and any so lu t ion  of eq.(20) 

with i n i t i a l  value i n  S approaches zero a s  t --)a . 

Q 

11) There e x i s t  constants  K , 6  such t h a t  t h e  s e t  R of a l l  cp 

P i n  C such t h a t  119 11 5 6/2K and t h e  so lu t ion  x(cp) of eq. (20) s a t i s f i e s  

IIxt((9)II I 6 f o r  t 5 0 i s  homeomorphic through pp t o  t h e  s e t  of cp i n  

P with 11cp11 5 6/2K. Furthermore, t h e  s e t  R i s  tangent t o  P a t  0 and 

any so lu t ion  with i n i t i a l  value i n  R approaches zero a s  t --)-a . 
111) I f  we extend t h e  s e t s  S, R of I) and 11) by adjoining a l l  t h e  

po in t s  i n  paths of so lu t ions  s t a r t i n g  i n  S and R f o r  p o s i t i v e  and negat ive 

values  of  t, respect ively,  and c a l l  t hese  extended s e t s  

S* i s  pos i t i ve ly  inva r i an t  and R" i s  nega t ive ly  inva r i an t  with respec t  

t o  system (20) .  

S* , R", then  
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These r e s u l t s  are proved by analyzing i n  d e t a i l  t he  i n t e g r a l  equations 

Only t h e  i n t e g r a l  equations (18) and t h e  behavior of t h e  solut ions 

a r e  used and not t h e  pa r t i cu la r  manner i n  which t h e  decomposition of 

i n  (18). 

on P, Q 

C was made. 

i s  unnecessary fo r  t h i s  problem. 

a r e  needed i n  appl icat ions and then an e x p l i c i t  representa t ion  of  P and .& 

i s  required.  

Therefore, much of t h e  d e t a i l e d  theory of t h e  previous sect ion 

S, R However, more d e t a i l e d  knowledge of 

If some of t h e  roo t s  o f  (4 )  l i e  on t h e  imaginary axis, then r e s u l t s  

corresponding t o  t h e  above have not been given, but  t h e  manner i n  which they 

are proved i n  [IS] and t h e  r e s u l t s  of Shimanov [l9] on s t a b i l i t y  i n  c r i t i c a l  

cases  seem t o  ind ica t e  t h a t  t h e  problem can be solved. 

The theory of t h e  b i furca t ion  of an equilibrium point  t h a t  occurs 

i n  ordinary d i f f e r e n t i a l  equations ( see  [ll]) can be extended t o  func t iona l  

d i f f e r e n t i a l  equations by using the  i n t e g r a l  eqs. (18). These r e s u l t s  dl1 

appear i n  the  Ph.D. t h e s i s  of  N. Chafee from Brown Universi ty  and may be 

b r i e f l y  summarized as follows. Suppose t h a t  t h e  funct ions L, N i n  eq. (20) 

depend upon a s m a l l  parameter C, say L = L(9, C), N = N((P, c) and t h a t  

N(p, C) s a t i s f i e s  t h e  same hypotheses of smallness i n  Cp as before. Also 

suppose the  l i n e a r  equation 

%(t) = L(Xt,  C), 0 5 z 5 zo , co > 0 , 

has  two simple c h a r a c t e r i s t i c  roots  of t h e  form 

a(C) > 0, 0 c C 5 Co , b(C) > 0 , 0 5 C 5 Z 

r o o t s  have negative r e a l  pa r t s .  I f ,  i n  addition, t he  zero so lu t ion  of t h e  

equation 

a ( X )  2 ib(C) , a(0) = 0, 

and t h e  remaining c h a r a c t e r i s t i c  
0 

H ( t )  = L(xt, 0) + N(xt, 0) 
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is asymptotically s tab le ,  then there e x i s t s  a 

system 

Cl > 0 such t h a t  t h e  

k ( t )  = L(xt, C) + N(xt, C) , 0 < C 6 C1 , 

has a nonconstant per iodic  so lu t ion  x*(t, C) such t h a t  x*C(t, 0) P 0. 

4.2 Equations w i t h  a small parameter. Consider t h e  system 

%(t) = L(xt) + N ( t ,  xt, E) ( 21) 

where L i s  t h e  same as i n  eq. (4)  and N ( t ,  'p, E) i s  some smooth 

funct ion of t, 9, E. An i n t e r e s t i n g  case i n  t h e  app l i ca t ions  is when 

N ( t ,  'p, 0) = 0 ( t h a t  is, eq. (21) i s  near t o  l i n e a r )  and a l so  some of t h e  

roo t s  of eq. ( 5 )  f i e  on t h e  imaginary axis. The problem is  t o  determine as 

much information as poss ib le  concerning t h e  so lu t ions  of eq. (21) f o r  E 

s m a l l .  

If N ( t ,  'p, e )  = N ( t  + T, 9, E) f o r  some T > 0, then  it i s  of  

i n t e r e s t  t o  determine necessary and s u f f i c i e n t  condi t ions f o r  t h e  ex is tence  

of  per iodic  solut ions of  period T. To do t h i s ,  one makes use of t h e  fact 

t h a t  t h e  equation 

(22) k ( t )  = L(xt) + f ( t )  

has a T-periodic so lu t ion  f o r  a T-periodic fo rc ing  func t ion  f i f  and 

only i f  

T 
1 y ( t ) f ( t ) d t  = 0 
0 

f o r  a l l  T-periodic so lu t ions  of t h e  ad jo in t  eq. (11) and then  develops 

a method o f  successive approximations t o  d i scuss  t h e  more complicated eq. 
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(21).  

systems of t h e  form (22) where 

(23).  

en t  parameters corresponding t o  t h e  number of l i n e a r l y  independent T-periodic 

so lu t ions  of t h e  unperturbed equation %(t) = L(xt). These independent 

parameters a r e  then used t o  attempt t o  make t h e  othogonal i ty  r e l a t i o n s  (23) 

hold fo r  a l l  approximations. 

I n  t h e  methcd ef  successive approximations, one usua l ly  enco-mters 

f does not s a t i s f y  t h e  or thogonal i ty  r e l a t i o n s  

On t h e  other  hand, t h e  f i r s t  approximation invloves a number of independ- 

For ordinary d i f f e r e n t i a l  equations, t h i s  process can be made 

r igorous  by a modification of t h e  o r ig ina l  d i f f e r e n t i a l  equation by some 

terms which involve t h e  independent parameters. The necessary and s u f f i c i e n t  

condi t ions f o r  t h e  Zxistence of T-periodic so lu t ions  r e s u l t  i n  condi t ions 

on t h e  parameters which w i l l  make the modified terms vanish. 

equations a r e  t h e  so ca l led  b i furca t ion  equations ( s e e  Cesar i  [20], Hale [21] 

f o r  d e t a i l s ) .  

The r e s u l t i n g  

For func t iona l  d i f f e r e n t i a l  equations, t h e  modif icat ions necessary 

i n  eq. (21) a r e  not so obvious and, i n  f ac t ,  Brownell [22] s t a t e s  t h a t  it i s  

impossible. 

would take  place d i r e c t l y  on eq. (21). However, Pe re l l6  [ 2 3 ]  has shown t h a t  

t h e  process  of Cesar i  and Hale can be extended t o  func t iona l  d i f f e r e n t i a l  

equat ions i f  t h e  modif icat ions a r e  performed on t h e  f i r s t  equation i n  

r e l a t i o n s  (18). 

dimensional space. 

f i c i e n t  condi t ions f o r  t h e  existence of T-periodic so lu t ions  of eq. (21) 

and shows by means of examples t h a t  t h e  theory can be used. 

T h i s  seems t o  be t h e  case f o r  eq. (21) where t h e  modifications 

These modifications of Pere l l6  take  place i n  a f i n i t e  

I n  t h i s  manner, Pere l l6  determines necessary and suf- 

Other more complicated o s c i l l a t o r y  phenomena can occur i n  eq. (21). 

For ordinary d i f f e r e n t i a l  equations, t h e  most widely used method f o r  a 
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discussion of equations with a small parameter i s  t h e  method of averaging 

o f  Krylov, Bogoliubov, Mitropolski, and D i l i b e r t o  (see [24] and [21].) 

simplest  case of t h i s  method f o r  equations o f  t h e  form (21) i s  t h e  following. 

Consider t h e  equation 

The 

(24) 

where g ( t ,  c p )  i s  almost pe r iod ic  i n  t uniformly with r e spec t  t o  Cp i n  

any 2ompa::t subset o f  C. If 

are t h e  solut ions of t h e  equation 

r e l a t ed  i n  any manner whatsoever t o  t h e  so lu t ions  of (24) f o r  E small? For 

a small r e t a rda t ion  in t e rva l ,  namely, r = ES, Halanay [25] proved t h a t  t h e  

so lu t ions  of the ordinary d i f f e r e n t i a l  equation 

(he re  z ( t )  represents  both an n-vector and a funct ion on C whose values 

fo r  each 8 i n  [-r, 01 are equal t o  z ( t ) )  y i e ld  valuable information about 

t h e  so lu t ions  o f  (25) f o r  E small. I n  f a c t ,  i f  (25) has an equilbrium 

point  whose associated l i n e a r  v a r i a t i o n a l  equation has  a l l  so lu t ions  approaching 

zero exponentally a s  t + co , then eq. (24) has  an asymptot ical ly  s t a b l e  

almost periodic so lu t ion  f o r  E s m a l l  and pos i t i ve .  This  same r e s u l t  a l s o  

holds  t r u e  with an a r b i t r a r y  r e t a r d a t i o n  r. This  extension as w e l l  as much 
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more information on averaging w a s  obtained by Hale [26] by using t h e  decom- 

p o s i t i o n  (18). 

t h e  method of averaging t o  func t iona l  d i f f e r e n t i a l  equations i s  accomplished 

by modifying t h e  equations only through t h e  f irst  r e l a t i o n  i n  eqs.  (18). 

Results of t h i s  type seem t o  ind ica t e  once more t h e  advantages of t r e a t i n g  

eq. (21) as a problem i n  an i n f i n i t e  dimensional space. 

The important remark t o  b e  made i s  t h a t  t h e  extension o f  

4.3 Asymptotic theory of l i n e a r  systems. Consider t h e  system 

( 26) 2( t )  = [Ao + A(t)]x( t )  + [Bo + B( t ) ]x ( t - r )  

where Ao, Bo are constant matrices and A ( t ) ,  B ( t )  are small i n  some sense 

f o r  l a r g e  t. I f  X i s  a r o o t  o f t h e  c h a r a c t e r i s t i c  equation, 

- X r  
d e t  [ X I  - A. - Boe 3 = 0 , 

t hen  t h e  system 

(27) ?(t) = Aox(t) + Box(t-r) 

X t  
h a s  a f i n i t e  number of l i n e a r l y  independent so lu t ions  of t h e  form 

where p ( t )  i s  a polynomial i n  t. Bellman and Cooke [27] considered (26) 

f o r  x a s c a l a r  and have given conditions on A ( t ) ,  B ( t )  which w i l l  ensure 

t h a t  (26) has so lu t ions  which are asymptotic at t o  t h e  so lu t ions  of (27) 

of t h e  form p ( t ) e  . The b a s i c  ' d i f f i c u l t y  t h a t  arises i n  t h i s  type of 

d i scuss ion  i s  t h e  determination o f  an ordinary d i f f e r e n t i a l  equation associated 

with (27) which has so lu t ions  of t he  desired type. 

t h a t  t h i s  ordinary d i f f e r e n t i a l  equation i s  a good approximation t o  (27) r e l a t i v e  

t o  t h e  type of so lu t ions  being considered. 

p ( t ) e  

00 

X t .  

The next s t e p  i s  t o  show 

I n  [27], t h i s  ordinary d i f f e r e n t i a l  
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w a s  obtained by some c l eve r  manipulations on equation (26) and, as a consequence, 

t h e  degree of approximation t o  (27) r e su l t ed  i n  some r a t h e r  annoying terms 

which t o  be made small required some pecu l i a r  hypotheses on 

app l i ca t ion  of t h e  theory of s ec t ion  3 leads d i r e c t l y  t o  an ordinary d i f f e r e n t i a l  

equation and furthermore l eads  t o  results of t h e  type i n  [27] except with 

weaker hypotheses on 

t h e  method of averaging and t h e  work of Pe re l l6  on per iodic  so lu t ions ,  t h i s  

i n d i c a t e s  t h e  advantages of making transformations on eq 

r a t h e r  t han  on t h e  o r i g i n a l  func t iona l  d i f f e r e n t i a l  equation. 

A ( t ) ,  B ( t ) .  An 

A ( t ) ,  B ( t )  ( s e e  Hale [28]).  A s  i n  t h e  discussion of 

(18) d i r e c t l y  

5. The Floquet theory. Systems of t h e  form 

where f ( t ,  Cp) i s  l i n e a r  i n  rp and continuous i n  t, rp have received 

considerable a t t e n t i o n  i n  t h e  l as t  f e w  years  by Hahn [29], Stokes [30], Halanay 

[9] and Shimanov 1313. 

theory f o r  ordinary d i f f e r e n t i a l  equations t o  func t iona l  d i f f e r e n t i a l  equations. 

The immediate goa l  has  been t o  extend t h e  Floquet 

Following Stokes [30], i f  x(q) i s  a so lu t ion  of (28) with i n i t i a l  

value Cp at 0, then xt(cp) de f ines  a continuous, l i n e a r  mapping of C 

i n t o  C f o r  each fixed t I 0. If we de f ine  t h e  operator  T ( t )  by 

T(t)Cp = xt(Cp), t hen  T ( t )  i s  compact f o r  t Z r and t h e  c h a r a c t e r i s t i c  

m u l t i p l i e r s  of (28) a r e  defined as t h e  elements o f  t h e  po in t  spectrum of 

T(%)(the monodromy operator).  To each c h a r a c t e r i s t i c  m u l t i p l i e r  p 0 

of (28), t h e r e  i s  a so lu t ion  of (28) of t h e  form p(t)eAt p ( t )  = where 
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p ( t  + 2rr) 
with a given c h a r a c t e r i s t i c  mul t ip l i e r  

subspace PA of C which i s  invariant  mder  T(aTk), k = 1,2,. . .. If Q A  

i s  a basis f o r  PA and T(2Tr)Qh = QhBA , where BA has  only t h e  eigenvalue 

A, t h e n  T ( t ) Q A  = A A ( t )  exp ( B h t )  where A A ( t  + 2rr) = A A ( t ) .  This  shows 

t h a t  on t h e  generalized eigenspaces of t h e  monodromy operator, t h e  Floquet 

r ep resen ta t ion  of t h e  so lu t ions  i s  valid.  Stokes [30] also shows t h a t  t h e  

behavior of t h e  so lu t ions  of (28) fo r  l a r g e  values of t i s  determined by 

t h e  c h a r a c t e r i s t i c  mul t ip l i e r s .  

and p = em. Finding a basis f o r  a l l  so lu t ions  of (28) associated 

p = e x2rr y i e l d s  a f i n i t e  dimensional 

Shimanov [31] has shown t h a t  t h e  space C can be decomposed i n  a 

manner similar t o  t h e  decomposition i n  sec t ion  3 f o r  t h e  autonomous equation. 

These r e s u l t s  can the re fo re  be used t o  supply t h e  n a t u r a l  extension of t h e  

a p p l i c a t i o n  i n  sec t ion  4.1. 

The book of Halanay [g] contains an extensive discussion of pe r iod ic  

systems with some very i n t e r e s t i n g  results which are pecu l i a r  t o  func t iona l  

d i f f e r e n t i a l  equations. Halanay a l so  proved t h a t  a necessary and s u f f i c i e n t  

condi t ion f o r  t h e  exis tence of a %-periodic so lu t ion  of 

2Tr 
i s  t h a t  y ( t ) g ( t ) d t  = 0 f o r  a l l  *-periodic so lu t ions  of t h e  ad jo in t  

equation. This f a c t  together  with t h e  decomposition of C ala Shimanov w i l l  
0 

' y i e l d  an extension of t h e  r e s u l t s  of Pe re l l6  i n  sect ion 4.2. 

The next n a t u r a l  problem i s  t h e  ex ten t  t o  which t h e  Floquet represent- 

a t i o n  i s  v a l i d  on a l l  of C. This  seems t o  be an extremely d i f f i c u l t  question 

and par t  of t h e  d i f f i c u l t i e s  a r i s e  from t h e  fact  t h a t  t h e  spectrum of t h e  

monodromy operator  may contain only a f i n i t e  number of points.  This immediately 
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e l iminates  the p o s s i b i l i t y  of t h e  expansion of a so lu t ion  of an a r b i t r a r y  

pe r iod ic  system i n  terms of t h e  generalized eigenspaces ( n o t i c e  t h e  c o n t r a s t  

with autonomous equations). 

equation (28) which are supposed t o  ensure t h a t  so lu t ions  can be expanded i n  

terms of t h e  generalized eigenspaces bu t  I have been informed by J. L i l l o  

t h a t  t h e r e  i s  a c r u c i a l  e r r o r  i n  t h e  proof of t h e s e  r e s u l t s .  L i l l o  has  a 

paper i n  t h e  proceedings on t h i s  question. 

Hahn [29] has given some condi t ions on t h e  

Halanay has  proposed t h a t  t h e  following may be t h e  proper statement 

o f  F loque t ' s  theorem f o r  system (28): t h e r e  exist  l i n e a r  operators  P ( t ) ,  

U ( t ) ,  where P ( t  + 2rr) = P ( t )  and U ( t )  i s  a semigroup of operators  associated 

, with an autonomous l i n e a r  func t iona l  d i f f e r e n t i a l  equation such t h a t  

P ( t )U( t ) ,  where T ( t )  i s  t h e  l i n e a r  operator associated with (28). It 

would be i n t e r e s t i n g  t o  e i t h e r  prove o r  disprove t h i s  fact. 

T ( t )  = 

6. Behavior near and exis tence of per iodic  so lu t ions  of autonomous equations. 

The next order o f  complications i n  t h e  development o f  a q u a l i t a t i v e  theory 

f o r  func t iona l  d i f f e r e n t i a l  equations i s  t h e  behavior of t r a j e c t o r i e s  near a 

pe r iod ic  solut ion o f  an autonomous equation. Even f o r  ordinary d i f f e r e n t i a l  

equations, t h i s  problem i s  not  completely resolved and, therefore ,  it i s  

not  unexpected t h a t  complications are a r i s i n g  i n  func t iona l  d i f f e r e n t i a l  

equations. 

of Poincarg, but t h e  fact t h a t  t h e  mapping induced by a func t iona l  d i f f e r e n t i a l  

equation i s  not a homeomorphism l eads  t o  d i f f i c u l t i e s  i n  t h e  app l i ca t ion  of 

t h i s  method. 

coordinate system i n  a neighborhood of t h e  closed curve generated by a pe r iod ic  

so lu t ion  and then discussing i n  d e t a i l  t h e  d i f f e r e n t i a l  equations i n  t h e s e  

t 

The b a s i c  t o o l  f o r  ordinary d i f f e r e n t i a l  i s  t h e  method of s ec t ions  

Another very important t o o l  i s  t h e  in t roduc t ion  of a l o c a l  
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coordinates.  

d i f f e r e n t i a l  equations but, at present, no one has  been ab le  t o  f ind  an 

appropriate  coordinate system. 

This  seems t o  b e  a n a t u r a l  attack on t h e  problem f o r  func t iona l  

I n  s p i t e  o f  t h i s ,  one n o n t r i v i a l  and i n t e r e s t i n g  r e s u l t  has been 

obtained by Stokes [32] without t he  in t roduc t ion  of a l o c a l  coordinate system. 

Suppose t h e  system 

( 2 9 )  k ( t )  = f ( x t )  

has  a nonconstant per iodic  solution. I n  t h e  space C t h i s  so lu t ion  generates 

a closed curve I?. Define t h e  concept of asymptotic o r b i t a l  s tab i1 i t .y  

with asymptotic phase i n  a manner completely analogous t o  ordinary d i f f e r e n t i a l  

equations except i n  t h e  space C. Stokes proves t h e  following r e s u l t :  i f  t h e  

l i n e a r  v a r i a t i o n a l  equation associated with a nonconstant per iodic  so lu t ion  

of ( 2 9 )  has a l l  c h a r a c t e r i s t i c  m u l t i p l i e r s  with modulus l e s s  than one (except 

t h e  obvious mul t ip l i e r  which i s  equal t o  l), t hen  t h e  pe r iod ic  so lu t ion  o f  

(29) i s  asymptotically o r b i t a l l y  s t ab le  with asymptotic phase. This  r e s u l t  

o f  Stokes can be applied t o  equations with a small parameter t o  a s ses s  t h e  

s t a b i l i t y  p rope r t i e s  of pe r iod ic  solut ions ( see  Pe re l l6  [23]). 

I n  t h e  theory of autonomous ordinary d i f f e r e n t i a l  equations which 

do not  contain s m a l l  parameters, one of t h e  basic methods for determining 

t h e  exis tence of l i m i t  cyc l e s  i s  t o  determine a subset o f  Euclidean space 

which i s  homeomorphic t o  a c e l l  such t h a t  any so lu t ion  o f  t h e  equation with 

' i n i t i a l  value i n  t h e  subset r e tu rns  t o  t h e  subset i n  a f u t u r e  t i m e .  One 

can t h e n  use t h e  Brouwer f ixed point theorem t o  assert t h e  exis tence of a 

l i m i t  cycle. 

t h a t  t h e  app l i ca t ion  of similar arguments (but, of course, i n  t h e  funct ion 

I n  a series of i n t e r e s t i n g  papers, Jones [33,34] has  shown 
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space C )  lead t o  exis tence of nonconstant pe r iod ic  so lu t ions  of t h e  . 

equations 

;c( t )  = - a x ( t - l ) [ l  + x( t ) ] ,  a >r/2 , 

H ( t )  = - a x ( t - l ) [ l  - x 2 (t)], a > T / 2  , 

as w e l l  as more general  equations. Many more examples of t h i s  type need t o  

be discovered i n  order t o  begin t o  understand how a func t iona l  d i f f e r e n t i a l  

equation can d i s s i p a t e  i t s  energy i n  such a way as t o  s u s t a i n  a self-exci ted 

o s c i l l a t i o n .  

7. Other problems. I n  t h e  previous pages, w e  have f a i l e d  t o  mention many 

important areas of i nves t iga t ion  i n  t h e  f i e l d  of func t iona l  d i f f e r e n t i a l  

equations. 

and t h e  appl icat ion of Lyapunov funct ionals .  

i t s  development and i s  a c t u a l l y  discussed i n  some of t h e  other  p re sen ta t ions  

a t  t h i s  symposium. 

bibliography. 

o f  t h e  most i n t e r e s t i n g  app l i ca t ions  of Lyapunov func t iona l s  t o  func t iona l  

d i f f e r e n t i a l  equations i s  contained i n  t h e  series o f  papers of Levin and 

Nohel ( s e e  t h e i r  paper i n  t h e s e  preceedings f o r  references) .  

One of t h e  most important i s  t h e  theory  of Lyapunov s t a b i l i t y  

This  theory i s  far along i n  

Some references on t h e  subject  a r e  contained i n  t h e  

However, I would l i k e  t o  po in t  out i n  p a r t i c u l a r  t h a t  one 

Another important aspect of  t h e  theory  i s  being developed i n  t h e  

Seminar o f  E l '  s g o l ' t z  at  Lumumba Universi ty  i n  Moscow. Much of t h i s  theory 

d e a l s  with v a r i a t i o n a l  problems with r e t a r d a t i o n s  and t h e  discussion of t h e  

corresponding boundary value problems f o r  t h e  Euler-Lagrange equations ( s e e  

references [lo], [ 3 5 ] ,  [36]). 

equations, see t h e  survey ar t ic le  of Halanay [37]. 

Cooke [36] i s  an extremely i n t e r e s t i n g  d iscuss ion  of s ingu la r  per turbat ions.  

For other  problems i n  func t iona l  d i f f e r e n t i a l  

Final ly ,  t h e  paper of 
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